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THEORETICAL AERODYNAMIC CHARACTERISTICS OF -
SHARP AND CIRCULARLY BLUNT-WEDGE
ATRFOILS AT HYPERSONIC SPEEDS
By Joseph W. Cleary and John A. Axelson

Ames Research Center
Moffett Field, Calif.

SUMMARY

The inviscid hypersonic aerodynamic characteristics of circularly blunt-
wedge airfoils are derived from numerical solutions. Hypersonic wedge theory
based on explicit oblique-shock equations 1s shown to provide rapid estimates
of the pressures over both sharp and blunt airfoils. The effects of varying
the airfoll wedge angle and bluntness and of varying the gas specific-heat
ratio are evaluated.

The hypersonic wedge theory provides an accurate prediction of the con-
ditions at shock detachment for sharp airfoils for any value of gas specific-
heat ratio. For the limiting case of infinite Mach number and a specific-heat
ratio of unity, the theory is in agreement with Newtonlan impact theory. The
exact maximum lift-drag ratios and the 1lift coefficients at maximum lift-drag
ratio for sharp airfoils at infinite Mach number are shown.

Variation of gas specific-heat ratio is shown to have large effects on
the aerodynamic characteristics of blunt and sharp airfoils at hypersonic Mach
numbers. The 1ift curves are demonstrated to be highly nonlinear and to
depart significantly from impact theory as the gas specific-heat ratio is
increased.

INTRODUCTION

Both sharp and blunt airfoils are of interest for hypersonic flight.
Sharp leading edges are desirable from the standpoint of reducing drag and
thereby achieving efficient hypersonic airfoil performance with increased
lift-to-drag ratios. Primary interest in sharp airfoils has generally been
directed to the lower end of the hypersonic speed range where convective heat-
ing presents no insurmountable difficulties. Useful techniques for estimat-
ing the hypersonic aerodynamic characteristics of sharp, thin airfoils at
small angles of attack were developed in references 1, 2, and 3 using hyper-
sonic similarity laws and small-disturbance approximations. One of the
significant results to arise from these earlier studies is that, within the
limited scope of airfoils and angles of attack covered, the hypersonic air-
foil having a flat windward surface appears to offer the optimum ratio of
lift to drag. However, these earlier studies did not cover the problem of
predicting airfoil characteristics at larger angles of attack up to shock



detachment. The predictions of these characteristics for sharp airfoils was
undertaken in the present study and includes the assessment of the effect of
variable gas specific-heat ratio.

The problems imposed by aerodynamic convective heating in the hypersonic
flight range have been met with the use of bluntness on both the noses of
bodies of revolution and along the leading edges of planar surfaces. Varilous
theoretical methods are available for predicting the hypersonic characteris-
tics of blunt airfoils. The simplestis the approximation of Newtonian impact
theory which has application to three-dimensional bodies but is questioned in
its applicability to planar shapes. Another more exact method, which is
extensively used in the present report, is the accurate numerical blunt body
and characteristics solution performed on an electronic computer. Other
simpler approaches are needed for accurately estimating the hypersonic aero-
dynamic characteristics of both sharp and blunt airfoils. The present study
was pursued with the development of such a simpler method as one of its pri-
mary objectives. For the numerical solutions, only airfoils having circu-
larly blunt leading edges and flat aftersurfaces are considered. The
selection of a circular leading edge leads to simplifications in the theoret-
ical methods and flat aftersurfaces are consistent with the optimum
properties of sharp airfoils having flat windward surfaces. Numerical solu-
tions of sufficient scope were obtained to evaluate the effects of wedge air-
foil angle and bluntness for specific-heat ratios of 1.400 and 1.667.

Through the use of oblique-shock theory and simple hypersonic concepts, the
numerical solutions are correlated. The solutions and correlations provide
means for making rapid accurate estimates of the hypersonic aerodynamic
characteristics of both blunt- and sharp-wedge airfoils.

SYMBOLS
b-p_
Cp pressure coefficient, ——
[s9)
c chord
cg section drag coefficient, drag
q,.C
cg! drag-coefficient component, drag component
g R
Cdg minimum section drag coefficient, mlnl:i? drag
c section lift coefficient, Ziit
1 q,.C
CZ' lift-coefficient component, llftq;;mponent



section pitching-moment coefficient, pltchlngzmoment

dC

pitching-moment component

(moment about x' = 0.4 c)

pitching-moment coefficient component, =2
' Yoo

(moment about leading-edge radius center line)
normal force
g,.Cc
resultant force

qooc

section normal-force coefficient,

section resultant-force coefficient,

drag

1lift

Mach number

static pressure

dynamic pressure

nose radius

wind-axis coordinate
body-axis coordinate
center of pressure of windward wedge surface (eq. (18))
angle of attack

ratio of specific heats
flow deflection angle
wedge angle

shock-wave angle

surface inclination, w = a + &,

Subscripts

detachment

lower surface

)

>



le leading edge

max maximum value
o0 free stream
st stagnation

u upper surface

Superscripts

- aerodynamic parameters obtained from oblique-shock theory

- correlation parameters (egs. (24), (25), (26), and (27))

NUMERICAL BLUNT-WEDGE SOLUTTIONS

Method and Results of Numerical Calculations

The inviscid hypersonic pressure distributions for circularly blunt
wedges have been obtained by numerical solution of the ideal gas equations
on an IBM 7090 computer for a range of wedge angles. The flow over the
blunt leading edge was computed by the inverse method of reference 4 which
is an extension to plane flows of the inverse numerical method of reference 5,

The solutions for blunt leading edges provided the supersonic values
along the line of imputs for continuing the computations over the wedge sur-
faces by the numerical method of charcteristics. The line of inputs and
other features of the flow are indicated in sketch (a). The procedure was
essentially the same as that of reference 6 with the exception that a quad-

Shock.

Typical characteristic

Blunt wedge~

Tangent point, p

Line of inputs,

Sonic liney, i

Region of blunt-
body solution\
Stagnation point,

N

Sketch (a)

ratic rather than linear interpolation
of entropy was used. A guadratic
interpolation of entropy was found
necessary to account for The correct
entropy layer due to the blunt leading
edge at large distances downstream.

As a result of this interpolation
scheme, the mass flow within the shock
layer was in close agreement with that
of the free stream at all streamwise
positions. To reduce the computing
time, 12 inputs were used rather than
the 25 of reference 6, since the num-
ber of inputs was found to have a
negligible effect on the accuracy of
the results.




The solutions were cobtained for as wide a variation in wedge angle. as: the
computing procedure would permit. Solutions were obtained for wedge angles-up
to 300 which were within the range where the flow was entirely supersonic over

the wedge surface. The absence of solutions

for greater angles is of little

concern because at the higher angles, induced effects of the blunt leading
edge are small and surface pressure is closely predicted by oblique-shock

theory. The lower limits of wedge
angles of -15° and -5° for specific-heat
ratios of 1,400 and 1.667, respectively,
are imposed because of inaccuracies in
the blunt-body solution for inputs near
the body.

Pressure distributions over blunt
leading edges.~ The effects of specific-
heat ratio on the pressure distribution
of the leading edge are shown in fig-
ure 1, Since characteristic solutions
could not be obtained for a specific-
heat ratio of 1.0 at Mach numbers of 10
and =, only the subsonic blunt leading-
edge part of the solution is shown in
figure 1(a). The pressure distribution
for 7 of 1.0 and infinite Mach number
(fig. 1(b)) was obtained by the Newton-
Busemann pressure law (Newtonian plus
centrifugal force correction) given in
reference 3 and under these conditions
is an exact solution. For specific-
heat ratios of 1.400 and 1.667, the
characteristics part of the solution
begins slightly after the sonic point
at x/R = 0.3 and continues to x/R=1.0.
The shape of the solution for 7y of
1.667 suggests slight inaccuracies in
the blunt-body solution which are
adjusted as the characteristic solution
proceeds, The effect of specific-heat
ratio for the range from 1.200 to 1.667
is small. Although not shown, modified
Newtonian theory, Cp = Cpgt sinZ B,
closely predicts the pressure distribu-
tion over the forward part of the nose
(x/R € 0.14), but seriously underesti-
mates the pressures over the afterpart
(x/R = 0.4). For these pressures ref-
erence 7 gives a better estimate which
consists in matching pressure gradients
obtained from modified Newtonian theory
and a Prandtl-Meyer expansion.

2.0 Y

—_——=—— 1000
| 200
h —— 1400

\\ =
o ] 1 1 1 |
2 4 (<] 8 10
x/R
(b) My =
Figure 1.- Pressure distribution over the
blunt leading edge.
>



Pressure distribution over a blunt wedge.- The effects of wedge angle and
specific-heat ratio on the pressure distributions over the surfaces of blunt
wedges are presented in figure 2 for two Mach numbers. In general, the pres-
sure distributions decay exponentially, that is, the maximum pressures at or
near the tangent points decay to the sharp-wedge value. Increasing the wedge
angle reduces the extent of the decay and for an angle of 300 the decay is
relatively unimportant. The solutions of figure 2 for 7 = 1.667 and a 30°
wedge indicate a steep compression starting at the tangent point similar to an
imbedded shock. Except for small wedge angles, changing Mach number from 10
to o« (fig. 2) decreased the pressure coefficient consistent with sharp-wedge
theory. However, because of the induced effects of bluntness, this trend was
reversed at small wedge angles. The pressure distributions of figure 2 are
presented in more detail in charts 1 and 2 at the end of the report.

8__
A comparison of the wedge-surface

maximim pressure coefficients from 7
figure 2 with sharp-wedge values is
shown in figure 3 for M, = ©. The 6
8 Sy, deg 5
R _______ 20
7H T T T T TTTTTTTTTTTTTTT Co
I 4
s _}’w
Y
S 1.400 3
CD
oL ———— 1667
’ 2
) N
A\\_; 15 | Induced effect
2 @ TH—r~iiTmom—m—me—
| —M____g _______ 0 1
0 J | | 1 I 1 (a) y = 1.667

Induced effect

3, deg

(b) y = 1.400

Figure 2.- Pressure distribution over the Figure 3.- Comparison of maximum induced
blunt-wedge surface for specific-heat pressure coefficient of blunt wedges
ratios of 1.400 and 1.667. with sharp-wedge theory; Mg, = ®.



magnitude and relative importance of the induced effects of bluntness ag§
indicated by the difference between the maximum pressure coefficients- ofﬁihe
blunt and sharp wedges. It is apparent that induced effects are relatively
unimportant for large wedge angles. For wedge angles less than about 26°,
induced effects are slightly less for 7 of 1.667 than for 1.400.

ATRFOIL~SECTION CHARACTERISTICS

The pressure distributions for the blunt wedges have been integrated
graphically to provide the contributions to lift, drag, and pitching-moment
coefficlents of the leading-edge and wedge surfaces. A method will be
developed for evaluating characteristics of blunt airfoils at angle of attack
by the superposition of the blunt-wedge solutions separately obtained for the
upper and lower surfaces.

Superposition of Blunt-Wedge Solutions

Figure Ut presents the components of lift coefficient and of drag
coefficient contributed by the segments of the leading edge between the
stagnation point and the upper or lower tangent points (see sketch (a)). The
dashed portions of the curves were obtained from extrapolations of pressure
distributions. The results are appllcable for Mach numbers from 10 to o
since the effect of Mach number is negligible. It is noted from figure b
that the 1lift and drag for x/R greater than 1.0 increases very little so
that contributions to 1lift and drag of surfaces that do not "see" the flow

are small.
I . o
—————————{ 1.200
I —==41.400 ]2760
--=- 1400
)2 == 667 ) . ———=11.667
céu.L / Clzu'l

+c ey =
l

)

\

)
Cd —Cdl

1.0 S
] 5 1.0 1.5 20 0] 5 1.0 1.5 20
x/R x/R
(2) Component of drag coefficient. (b) Component of 1ift coefficient.

Figure L4.- Components of 1ift and drag coefficients for the upper or lower segments of the
blunt leading edge for Mach numbers from 10 to .



The respective contributions of the leading-edge and wedge surfaces have
been combined to provide universal charts from which inviscid 1ift, drag, and
pitching=-moment coefficlents of circularly blunt-wedge alrfoils can be easily
evaluated. These results are presented in charts 3 through 8 for specific-
heat ratios of 1.400 and 1.667. For upper-surface inclinations greater than
150 (7 = 1.400) and greater than 5° (y = 1.667) the curves of the charts were
obtained from extrapolations of pressure distributions as previously noted.
Since the pressure coefficient is rapidly approaching the limiting value,
-2/7Mw2, with 1increasing upper-surface inclination, the need for extrapola-
tions diminishes with increasing angles of attack.

Coordinate transformation and use of charts.- Because the force contribu-
tions are presented as 1ift and drag coefficients, a coordinate transformation
from the body axis to the wind axis of the blunt-wedge solutions is required.
Equations (1) and (2) are the coordinate transformations of the trailing edges
of the upper and lower surfaces when inclined at an angle, W, to the wind axis
(sketeh (b)).

¢ + R(sin a/cos w,) - R
*u T Tcos @ + s1 + R (1)
e Xy~ ™ sin a tan (L)u

¢ - R(sin a/cos w;) - R

XZ - cos o + sin a tan wz + R (2)

To estimate the 1lift, drag, and
pitching moments for a particular
blunt-wedge airfoil, it is first nec-
essary to evaluate the inclinations
and the trailing-edge coordinates of
Sketeh (b) the upper and lower surfaces for each
angle of attack being considered. The
contributions c¢3', cg', and cp' of
the upper and lower surfaces may then be read directly from charts 3 through 8.
To facilitate making this transformation, equations (1) and (2) are presented
as curves in chart 9. The procedure is illustrated by the arrows on the
transformation and airfoill design charts for a typical airfoil having
C/R =15, By = 5°, and a = 25°. In the preparation of these charts the upper
and lower surfaces originate at the stagnation point and not at the leading
edge of the airfoil. The contribution of the upper surface is added to the
lower surface to evaluate the total drag coefficient but it is subtracted
from the lower surface contribution to evaluate the total 1ift and pitching-
moment coefficients. After evaluating the total force and moment coeffi-
cients, conversion to the more conventional airfoil coefficients based on
chord can be made by multiplying by the appropriate R/c ratio.




Effects of Airfoil Geometry

Two parameters that define the profile of circularly blunt airfoils are
the bluntness ratio, R/c, and the wedge angles, 8y, of the upper and the
lower surfaces with respect to the body or reference axis. Since variations
of either parameter may have important effects on aerodynamic characteris-
tics, the effects of varying each will be considered separately. Only the
symmetrical airfoil will be considered, since it is apparent the effect of
asymmetry can be accounted for by a shift in reference angle of attack. A
base pressure coefficient of zero will be assumed.

Effect of wedge angle.- Figure 5
presents the effect of wedge angle on &
the 1ift, drag, and pitching-moment
coefficients and lift-drag ratio of
blunt airfoils having a bluntness, R/c,
of 0.05. At hypersonic Mach numbers,
it is evident from figure 5 that
increasing the wedge angle is an effec-
tive means for increasing lift-curve
slope of blunt airfoils within the
angle-of-attack range shown. It may be
observed that the %ift curve of the
blunt airfoil of O wedge angle is well
approximated by oblique-shock flat-
plate theory at the higher angles of
attack. Although increasing wedge angle
increased the drag coefficient, the
maximum value of lift-drag ratio was
practically unaffected because of the
accompanying increase in 1ift coeffi-
cient; however, the angle of attack for
maximum 1lift-drag ratio was reduced.

For a given angle of attack, pitching-
moment coefficient increased with wedge
angle. Because of a corresponding
increase in 1lift coefficient, however,
increasing the wedge angle increased
the static longitudinal stability,
-(dep/dey), only slightly.

Effect of varying bluntness. -
Leading-edge bluntness may be considered
to exert three influences on the aero-
dynamic characteristics of wedge air- Figure 5.- Effect of varying wedge angle on
foils. TFirst, the pressures on the t1:1e ae.rodynamic characteristics of blunt
leading edge differ from those of a airfoils; Rfc - 0.05.
sharp airfoil and effectively cause
concentrated forces at the leading edge.

Second, bluntness has a carry-over or

(a) M, = 10, 7 = 1.400

o
~a



induced effect on the pressure distribution over the flat aftersurfaces or
the airfoil. Thirdly, bluntness causes a foreshortening of the effective
chord over which the oblique-shock pressures predominate. While these effects
cannot be separated readily, their separate effects can be observed at cer-
tain angles of attack and will be demonstrated by figures 5 and 6. As shown
in figure 6, the first influence of bluntness produces a large increase of
drag at o° angle of attack. Although not readily apparent, the drag increase
is accompanied by a small loss in 1ift that develops with increasing angle

of attack. The loss in 1lift is due to an unbalance of pressure forces acting
on the leading-edge surfaces between the stagnation point and the upper and
lower tangent points. The second or induced effect of bluntness is demon-
strated by the increased 1lift of the blunt airfoil of o° wedge angle relative
to that of the flat plate in the lower angle-of-attack range of figure 5.

The third effect of bluntness is demonstrated by the loss in 1ift of the
blunter airfoils at high angles of attack of figure 6.

] |

| |

' 1 |

0 4 8 12 I8 20 24 28 32 36 40 o 4 8 2 16 20 24 28 32 36

40
a,deg a, deg
(b) My = », 7 = 1.400 (e) My =, y = 1,667

Figure 5.- Concluded.
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(a) M, = =, 7 = 1.400 (b) My = o, v = 1L.667

Figure 6.- Effect of varying bluntness on the aerodynamic characteristics of blunt airfoils;

By = 57

In general, induced effects of bluntness are important only for airfoils
of small wedge angle at small angles of attack and are overpowered by oblique-
shock effects for wedge angles of at least 50 or greater at all angles of
attack. At higher angles of attack, where induced effects are small, the
loss in 1ift due to increasing bluntness is approximately proportional to
R/c. Increasing bluntness was accompanied by increased drag and a reduction
in lift-drag ratio. The variation of pitching-moment coefficient with angle
of attack was only slightly affected by increasing bluntness. Evidently, the
contribution of nose drag to pitching moment was largely compensated by an
opposing moment dvue to loss in 1lift of the nose. It should be noted that
this balance between nose-1ift and nose-drag moment contributions is a char-

acteristic of the circular blunt nose and may not exist for other types of
bluntness.
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Effect of Mach number and specific-heat ratio.- Figures 5(a) and 5(b)
indicate that increasing Mach numbers from 10 to o reduced the 1lift and
drag, but left maximum lift-drag ratio about the same. Increasing specific-
heat ratio from 1.400 to 1.667 (figs. 5(b) and 5(c)) increased the 1ift and
maximum lift-drag ratio. Similar effects due to increasing the specific-
heat ratio are evident in figures 6(a) and 6(b) for an airfoil whose blunt-
ness is 0.10. Figures 5 and 6 also demonstrate that increasing the
specific-heat ratio increased the pitching-moment coefficient, but because
of the increase iIn 1lift coefficient, the static stability, -(dcm/dcz), is
relatively unaffected. In conclusion, it has been demonstrated that induced
effects of bluntness are important mainly at low angles of attack. At high
angles of attack, obligue-shock theory of sharp-wedge airfoils correctly
predicts for circularly blunt airfoils the trends of 1ift coefficient pro-
duced by increasing wedge angle, Mach number, and specific-heat ratio.
Because of its general suitability for predicting these trends, obligue-
shock theory will be examined next with the intention of developing a simple
approximation that accurately predicts blunt airfoil characteristics at
hypersonic Mach numbers.

HYPERSONIC WEDGE THEORY

Derivation and Application

The practical application of obligue-shock theory is severely encumbered

by the implicit relation that exists between shock angle, deflection angle,
Mach number, and specific-heat ratio as given by the cubilc equation in
sin® & of reference 8,

M2
sin® o -{ @k%{%%§> + 7 sin® 6} sin® o
o]

oM = +1)2 - 2
+ {( w t+ %) - [(7 n ) i 11 sin2 é}'sing o - cos®= © -0
M% M2 M4

N o= o
(3)
At hypersonic Mach numbers, it i1s possible, by an order of magnitude analysis,
to derive approximate explicit equations for shock angle and pressure coeffi-
cient as a function of deflection angle, Mach number, and specific-heat ratio
that in the limit, M, = «, are exact.

If terms of order 1/M.* are neglected compared to terms of order 1/M.2,
equation (3) reduces to a simple gquadratic equation in terms of the variable,
sin® 6, whose solution is

sin® 6 = = <} + —25 + 7 sin® & £ cos 6\/1_—-Ji§ - 72 gin® 6> (4)
M M

2 " %
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and since

CP=7il<sin29-Mi2> (5)

it follows that

2 - + _ L 2 4in2
Cp = —— <; + 7 8in® & * cos & J[ 5B - ¥€ sin€ 3 (6)

[e e}

The positive and negative signs before the radicals of equations (4) and (6)
constitute the strong and weak shock solutions, respectively. If M _ = %,
equations (4) and (6) reduce to the exact results

1
sin® 9 = > (i + 7 8in® & * cos & J1- 72 gin? 6> (7)

N

2
Cp = y + 1

<1 + 7 sin® B % cos & J1-72 sin® b> (8)

and, in the Newtonian limit of M_ = o, and y = 1, simplify to the Newtonian
values

o = K/E
6 =0
and
CP =2

Cp = 2 sin® 3
which represent the strong and weak shock solutions, respectively.

Conditions for shock detachment are closely approximated by equating the
radical in equation (4) to zero, giving

sin® 6n = = + Ll . Mm2 — (9)
D ) 2 M002 7Moc>2

1 - M_=

sin® 8p = ——ii/—‘”—) (10)
and

*2 y +1 - (M/Mooz)
Cpp = 7[ y + 1 (11)
13



1L

—— Hypersonic—wedge theory
(eq.(6)}

———Oblique— shock theory(Ref 8}

¢] | |

100 (
90
80
70
60
50

8,deg

40

30

20

Error< 5 percent

——— Hypersonic -wedqge theory (eq.@)}
— — Obhque-shock theory (Ref 8)

it ( [ I 1 !
o] 10 20 30 40 50 60
8,deg .

Figure 7.- Comparison of oblique-shock solu-

tions with hypersonic wedge theory; y= 1.400.

For infinite Mach number, exact detach-
ment conditions are

sin 6y :vﬁ;%gzz (12)
sin 8y = 1/y (13)
2/y (1k)

oy, =

These results constitute an explicit
hypersonic wedge theory of obligue
shocks. The oblique-shock problem has
been considered also in reference 9
with an analysis that parallels small
disturbance theory. The equations
derived in reference 9, while useful,
are cumbersome to apply and the exact
solution at infinite Mach number is
not achieved.

Figure 7 presents a comparison of
equations (4) and (6) with exact solu-
tions of the oblique shock equation (3)
in order to demonstrate the applica-
bility of the present theory. The
accuracy and the range of deflection
angles for which the theory is appli-
cable improves with increasing Mach
number, as indicated by the error
boundary of figure 7. Figure 7 demon-
strates that the theory can hardly be
distinguished from the exact curves at
a Mach number of 20 for deflection
angles greater than about 10°.

The present hypersonic wedge the-
ory complements the small-disturbance
theory of references 1 and 10 for
deflection angles greater than about
12° (where small disturbance theory is
no longer valid) as is shown in fig-
ure 8. The judicious use of both
theories permits rapid and accurate
predictions of oblique-shock properties
at all hypersonic Mach numbers. Fig-
ure 8 calls attention to the inability
of Newtonian theory to accurately pre-
dict pressure coefficients or the
detachment of obligue shocks for Mach
numbers other than o, even if the
specific-heat ratio is 1.0.
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Figure 8.- Comparison of wedge theories for
a Mach number of 5.

The significant effects of
gspecific-heat ratio on oblique-shock
characteristics are demonstrated by the
exact solutions of figure 9 for infi-
nite Mach number. If the specific-
heat ratio is 1.0, the weak-shock solu-
tion reduces to Newtonian theory, while
the strong-shock solution yields a
pressure coefficient of 2 consistent
with the normal-shock solution. Simple
relations are shown (fig. 9) for the
pressure coefficlent and shock-wave
angle for detachment for any specific-
heat ratio.

The application of equation (6)
with tangent-wedge approximgtions pro-
vides a method for rapidly estimating
the pressure distributions of sharp,
curved airfoils at angle of attack.
The accuracy of this method is compa-
rable to that of the shock-expansion
theory, but the present method is more
rapid.
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Figure 9.- Effect of specific-heat ratio on
exact pressure coefficlents and shock-
wave angles predicted by hypersonic wedge
theory; M, = ®.

0

Development of Correlation Parameters

Mo = @ and y = 1.0.- Since the sharp airfoil can be considered the limit-
ing case as airfoil bluntness decreases to zero, the question arises as to
what extent sharp-airfoil theory is useful for predicting aerodynamic

15




characteristics of blunt airfoils. For the Newtonian limit of M = ® and

¥ = 1.0, the relationship is simple and well understood. For these condi-
tions, the Newton-Busemann pressure law predicts that the flow separates from
the circular leading edge at an angle of 54.7° from the stagnation point

(x/R = 0.422) and the pressure coefficient is zero until the flow "sees" the
flat surfaces of the airfoil (see ref. 11). The pressure coefficient of the
flat surface is given by Cp = 2 sin® w. For M, = and 7 = 1, the circular
leading edge contributes to the drag but not to the 1ift of the airfoil for a
wide range of angles of attack. These concepts when applied to blunt airfoils
(provided a > B,) give the following equations,

l-%(l—sin%w)

c, = cos(a + O 1

1= % ( w) cos Oy (15)
\\ l-g—(l—sinfiw)

- = C i + 8 16

éd Cde p sin(a W) —— (16)
<! R . x! '}“(!> 1 - c (l - sin BW)
cm - (7o - 7)) Cdy sinal = Cp cos dy = 7;: cos By (17)
R .
g R . 1 1 - - (1 - sin B®y) (18)
c C 2 cos Oy cos By
where

Cp = 2 sin®(a + dy) (19)

and x'/c is the moment reference
center. As an aid to interpreting the
equations, the airfoil forces and
geometry are shown in sketeh (c).

In summary, equations (15)
through (19) represent exact asymp-
totic solutions of the aerodynamic
properties of any circularly blunt- or
sharp -wedge airfoil in the Newtonian
limit M, =~ and 7 = 1.0. The sharp-
wedge solutions are, of course, spe-
cial cases for which R/c and cdie
are zero. Although equations (15)
through (19) are mainly of academic
interest, by suitable modifications
they can be applied to the more prac-
tical case of Mg < © and ¥ > 1.0.
Sketeh (c) These modifications will now be made.
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Mo < 00 and ¥ > 1.0.- Departure from the Newtonian limit introduces-three
effects which must be considered. In order of increasing importance these
effects are: (1) a negative lift contribution of the leading edge, (2)
induced effects of bluntness on the flat surfaces of the airfoil, and (3) the
fact that 2 sin® w is a relatively poor estimate of the correct level of
pressure coefficient on the flat windward surface. These differences from
the Newtonian limit are illustrated by sketch (d).

Since it has been previously
demonstrated (fig. 3) that induced
effects are important mainly at small
flow deflections, no correction for
induced effects will be made. Correct-
ing equations (15) and (17) for 1lift of
the leading edge and using equation (6)
with © replaced by o + 3y rather
than equation (19) gives the modified
equations

Mp=0, ¥ =|(Newton -Busemann)
_——— M°°<oo, Y >
Sketch (d)
1 - g (1 - sin dy)
<}Z —czze> = Cp cos(a + dy) (20)

cos Ow

1 - § (1 - sin dy)

<%d - Cdle) = Cp sin(a + By)

21
cos Oy ( )
x! R\ [ . \\
e QFZZe cos @ + ¢, sin a/
R .
SR 1-7(1-sin dy)
= Cp cos ¥y (= - == (22)
C c cos Oy
and
-2 1+ in®(a + 8y) - (o + 3y [1 e 2 gin®(a + By)
Cp = S+ I 7 sin W cos w —14w2 - sin
(23)

These equations can be put in a form more suitable for correlating the numer-
ical solutions by defining the correlating parameters

17




cos Oy
- = (24)
clle> 1 - g (1 - sin By) Cp

0|
o~
1]
N
0
o

_ ’ cos Oy _ A
cq = <§d - Cd1e> 1 -2 (1 - sin &y) cot(a + 8y) = Cp (25)
- - S
x' R i
L £ 0) (o, 000 oo, wim ) cos &y coslatoy) _ 3
"= x_>£—> 1 -8 (1-smy)| %W ;
c c (26)
and
ap B Cp cos(a + 3y) (a7)

It may be observed that Eﬁ is the 1lift coefficient of a flat plate inclined
at an angle, a + Oy (upper surface expansion neglected).

Lift-curve slope, dcz/dav and longitudinal stablity, —(dcm/da), may be
estimated from equations (20), (22), and (23) by differentiation, considering
cy and cp as dependent variables and « as the independent variable.

The numerical solutions for the 1ift, drag, and pitching-moment coeffi-
cients of figures 5 and 6 are correlated by these parameters in figure 10.
With the exception of low angles of deflection, where induced effects are
important and where theory does not apply for finite Mach numbers, excellent
correlation is demonstrated for a varilety of airfoils and flow conditions.

The effects of wide variations in Mach number and specific-heat ratio are well
correlated for the angle-of-attack range wherein maximum lift-drag ratio is
likely to occur. Even for the blunter airfolls, for which R/c > 0.05

(fig. 10(b)) and for which induced effects are more important, good correla-
tion is retained.

From these results, it is evident that the induced effects of bluntness
on the pressure distribution of the upper and lower airfoil surfaces are
largely self-compensating and hypersonic wedge theory (eq. (6)) closely
accounts for integrated forces and moments. To demonstrate this more clearly,
a single computation using Newtonian theory (eq. (19)) in place of hypersonic
wedge theory is showmn in figure 10(a). The deviation from perfect correla-
tion of 1ift coefficient is about 20 percent if Newtonian theory is used as
compared to about 2 percent for hypersonic wedge theory.
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""""" Equation {24)

R/

005 0O — 7:1.400,
010 o ‘.ll‘ M= ©

51 Newtonian C
4l ,
- Equation (24)
T 3
eosss el Vo
s o . 10 1400
JaY A 10 1667
& [u] | ® 1400
'r o . © 1667
0 ]l | | { | 1
6 —
Newtonian
5F
a4+ [N ©
~ " Equation (25)
g 3} o)
2
N N £
o
0 1 1 | ] ]
6 -
Newtonian \
5 a
)
a4l
" Equation (26)
[ 3
2
A
— 1 | | | i ! ]
0] | 2 3 4 5 &
CP

(a) Effect of wedge angle.

""" ‘Equation {25)
[o]
@]
©
a
| 1 | | | | | |
6284
"Equation {26)
[o]
| | 1 | | | | j
| 2 3 4 5 () 7 8

(b) Effect of bluntness.

Figure 10.- Correlation of aerodynamic coefficients of blunt airfoils evaluated from

characteristic solutions;

a > By.

Since induced effects decrease with decreasing Mach number, the correla-
tions are believed applicable for all hypersonic Mach numbers where hypersonic
wedge theory is adequate - generally from M = 5 to o.
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Equations (20) through (22) contain the geometrical parameter
[1 - (R/c) (1 - sin &y)]/cos &y. To facilitate rapid estimates of aerody-
namic coefficients of blunt airfoils, this parameter is presented in chart 10.

For evaluations of blunt airfoil characteristics (egs. (24), (25), and
(26)) the 1lift and drag acting on the leading edge may be taken from the num-
erical solutions presented in figure U4 for gas specific-heat ratios of 1.2,
1.4, and 1.667. These quantities may also be estimated with less accuracy
by modified Newtonilan theory using the following expressions

C
R R e
G
Clye = - §§§% sin3(a + dy) (29)

where o > Oy.

Prediction of Airfoil Characteristics

Maximum 1ift coefficient.- The effect of specific-heat ratio on the exact
1ift curves of flat-plate airfoils at infinite Mach number is presented in
figure 11 where

cy = 5 i T <é + 7 5in2 o - cos a4l - 72 sin2 ?> cos a (30)

Flat-plate 1ift curves exhibit decidedly nonlinear variations with angle of
attack and depart significantly from impact theory as maximum 1ift coefficient
is reached. The 1ift coefficient at shock detachment increases with increas-
ing 7, reaches a maximum at 7 =.f§, and thereafter decreases with further
increase in ¥. It is interesting to note that the maximum 1ift coefficient
corresponds to that for shock detachment for ¥ of about 1.15, but for

7 < 1.15, the maximum 1ift coefficient occurs well below the angle for shock
detachment. These same effects and trends prevail at lower hypersonic Mach
numbers, except the curves shift to the left in accordance with the reduction
in shock-detachment angle with reduction in Mach number. It should be noted

the results presented in figure 11 apply to any sharp-wedge airfoil for
|2 a > Oy 1if the origin is shifted a

distance ©w to the right.
10 r —
| 667 ~._ - Detochment The extent to which the flat-plate
B 1400, X 1ift curves of figure 11 near detach-
|zoo\:\\\ \ ment apply to blunt airfoils cannot be
. °r ||oo\;\\ \\ determined by numerical solutions.
14_ 1000~ _ \ However, because of the close correla-
tion provided by hypersonic wedge
o theory at high angles of attack
(eq. (2k) and fig. 10) it is reason-
o 36055 853 able to expect that the flat-plate

a, deg solutions predict the trends caused
Figure 11.- Effect of specific-heat ratioc on by variations in both specific-heat

the 1ift characteristics of sharp flat ratio and Mach number.
airfoils at infinite Mach number.
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Lift-drag ratio.- While it is generally recognized that specific-heat
ratio has a small effect on the lift-drag ratio of slender configurations’
having very small minimum drag coefficients (ref. 12), the effect on blunter
Since an accurate estimate of maximum

shapes has not been clearly established.
lift-drag ratio is essential to predict
performance and reentry characteristics
of space vehicles, it is worthwhile to
examine the equation for lift-drag

ratio of flat-plate theory in some
detall. The lift-drag ratio at infinite
Mach number of a flat-plate airfoil
whose minumum drag coefficient is
is given exactly by

L _ 1
D (Cdo/cp cos a) + tan a

cdo

(31)

where C is a function of the angle of
attack and may be obtained from equa-
tion (8) with © replaced by «. An
examination of equation (31) shows that
as cd, approaches zero, departures
from inviscid flat-plate thecry

(L/D = cot a) are negligible. Thus the
effect of specific-heat ratio through
its dependence on pressure coefficient
is insignificant. However, if cg, 1is
sufficiently large, the converse is true
and a dependence of L/D on specific-
heat ratio is indicated.

Theoretical flat-plate values of
maximum lift-drag ratio and the 1ift
coefficient for maximum L/D have been
obtained from equations (31) ana (8) to
show the effect of specific-heat ratio,
and the results are presented in fig-
ure 12. Values from numerical computa-
tions of various blunt airfoils (figs. 5
and 6) with the 1ift coefficients cor-
rected for loss in 1ift of the leading
edge are shown as data points. Excel-
lent agreement of the blunt-airfoil
solutions with flat-plate theory is
demonstrated if values are plotted
versus minimum drag coefficient.
Although the results presented in fig-
ure 12 are for infinite Mach number,
the maximum lift-drag ratios shown
closely approximate those for the Mach
number range from about 10 to .

While the effects of specific-heat

€, for{L/Dlmox

(L/D)max

7=

30°
!
6
i 7
/
5+ /
25° 4
) /7
at _/ ‘ Theory
Y
4
I 667
2% 1 400
3+ .
I 000
> a=15°
|
o) 1 ! I 1 AL 1 J
a0
Numerical soluhons
36 O  C———
A N
32
o i}
24 a=15°
20
[AS) o
1.2
8K Theory
4
1687
al 1400
1 000
| l N I 1 | —
o} 04 o8 12 16 20 24 28

Cdg

Fisure 12.- Effect of specfic-heat ratio on
the performance parameters of blunt air-
foils at hypersonic Mach numbers.
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ratio on maximum lift-drag ratio are relatively unimportant for very small
minimum drag coefficients, the effect is more important for large values of
minimum drag coefficient characterizing blunt airfoils. The large effects of
specific-heat ratio on the 1lift coefficient for maximum lift-drag ratio

(fig. 12) are consistent with those shown earlier for the 1ift curves of both
blunt and sharp airfoils (fig. 5). Tt is readily apparent that Newtonian
theory would significantly underestimate both the 1ift coefficient for maxi-
mum lift-drag ratio and the maximum lift-drag ratio.

CONCLUDING REMARKS

Numerical solutions have been obtained for blunt wedges in a perfect gas.
The effects of wedge angle, nose bluntness, and specific-heat ratio have been
determined for the Mach number range from 10 to «o. The pressure distribu-
tions have been integrated to provide curves from which inviscid 1ift, drag,
and pitching-moment coefficients of circularly blunt-wedge airfoils can be
evaluated.

The numerical solutions indicate that increasing the wedge angle of the
blunt airfoils significantly increased the lift-curve slope, increased the
drag, and had little effect on maximum lift-drag ratio. These trends are
consistent with those predicted by oblique-shock theory for sharp airfoils.
Increasing the bluntness of the airfoils increased the drag but also caused a
loss in 1ift which developed with increasing angle of attack. The loss in
1lift was generally proporticnal to the loss in 1ift of the leading edge. For
wedge angles near 09, the incorporation of bluntness tended to linearize the
1lift curves at small angles of attack. The significant effects of increasing
gas specific-heat ratio were greater lift-curve slopes and lift-drag ratios.

A hypersonic wedge theory, based on explicit oblique-shock equations, is
shown to provide a rapid and accurate prediction of the aerodynamic character-
istics of alrfoils with attached shocks for any value of the specific-heat
ratio. The theory also provides an accurate prediction of conditions at shock
detachment for sharp airfoils. For the limiting case of infinite Mach number,
the theory is exact for any specific-heat ratio and is in agreement with
Newtonian theory for a specific-heat ratioc of unity. By accounting for the
1ift and drag of the leading edge, the theory is shown to be applicable to
blunt airfoils for an angle-of-attack range wherein maximum lift-drag ratio
occurs. When leading-edge bluntness is taken into account, the theory pro-
vides an excellent correlation of the effects of wedge angle, bluntness, and
specific-heat ratio at hypersonic Mach numbers. The theory is useful for
predicting the maximum lift-drag ratio and the 1lift coefficient at maximum
lift-drag ratio for both blunt and sharp airfoils.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Jan. 14, 1964
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Chart 2.- Pressure distribution over the blunt-wedge surface for a specific-heat ratio of 1.667.
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